```███╗   ██╗ ██████╗  ██████╗ ██████╗ ██╗   ██╗██╗     ███████╗
████╗  ██║██╔═══██╗██╔═══██╗██╔══██╗██║   ██║██║     ╚══███╔╝
██╔██╗ ██║██║   ██║██║   ██║██║  ██║██║   ██║██║       ███╔╝
██║╚██╗██║██║   ██║██║   ██║██║  ██║██║   ██║██║      ███╔╝
██║ ╚████║╚██████╔╝╚██████╔╝██████╔╝╚██████╔╝███████╗███████╗
╚═╝  ╚═══╝ ╚═════╝  ╚═════╝ ╚═════╝  ╚═════╝ ╚══════╝╚══════╝

```

# By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

This is not asking for the whole of the sum of the Fibonaaci numbers up till the term reaches 4000000 or above. But rather summing the specifically even terms within the sequence up until the even numbers reach 4000000 or above, to which it halts. So we’d have to use modulo once more to filter out the even numbers and sum them up in the sequence.
Solution:

``````def fibby(n):
first, second = 0 , 1
fibnum = 0
sum = 0
if(n == 0):
return one
elif(n == 1):
return two
else:
while(fibnum < n):
fibnum = first + second
first = second
second = fibnum

if(fibnum % 2 == 0):
sum += fibnum
return sum

print(fibby(4000000))
``````